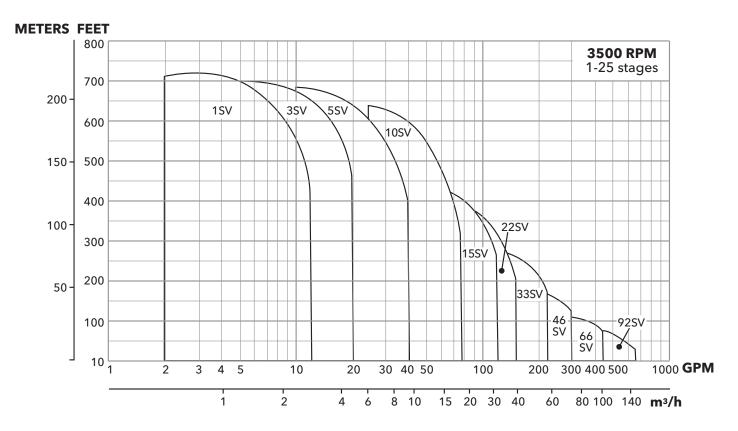


Packaged e-SV Hydrovar Series

VARIABLE SPEED WATER BOOSTER WITH E-SV VERTICAL MULTISTAGE PUMP AND FUSED DISCONNECT


Goulds Water Technology

Commercial Water

CONTENTS

Loverage Chart	. 3
Main Components	. 4
Markets and Applications	5-7
Characteristics of e-SV Pump, Drive and Disconnect	8-11
Operation Description	12
Performance Information	13
Selecting a Package	14
Order Numbering System	15
Building the order number for the Packaged e-SV Hydrovar System	16
Packaged Hydrovar Kits and Numbering System	17
e-SV Pump Technical Data	8-21
Motor Data	22
Package Dimensions / Weights	3-24
Fechnical Data - References	5-27

PACKAGED HYDROVAR / e-SV COVERAGE CHART

NOTE: Refer to e-SV Technical Brochure and/or the selection software for final e-SV pump selection.

Goulds Water Technology

Commercial Water

"Packaged Pumping System"

MAIN COMPONENTS

of constant pressure variable speed system

- One multistage vertical **pump**, Goulds Water Technology e-SV series.
- Hydrovar® pump mounted variable speed drive
- **Pressure transducer** for constant pressure control, connected to the Hydrovar drive.
- **NEMA 4X** fused disconnect panel with corrosion resistant durable plastic; external on/off switch with lockout/ tagout. Panel is bracket mounted directly to pump.
- **Electrical panel** for control and protection, with casing made of plastic material, NEMA 4X, equipped with:
 - fast acting fuses. The panel is mounted on the electric pump using a bracket.

The pump package comes pre-assembled and tested, complete with operating instructions and panel wiring diagram.

- 1) Vertical multi-stage stainless pump
- 2) TEFC standard NEMA 2-pole motor
- 3) NEMA 4X fused disconnect panel
- 4) Hydrovar® variable speed controller
- 5) cUL flexible liquid tight conduit/wiring
- 6) Pressure transducer (sensor) with cable
- **7)** Outdoor use

MARKETS AND APPLICATIONS

Booster Sets

MARKETS SERVED

MUNICIPAL, COMMERCIAL, INDUSTRIAL

APPLICATIONS

- Water network supply in condominiums, offices, hotels, shopping centers, factories, water treatment, process control.
- Water supply to agricultural water networks (e.g. irrigation).
- Variable flow / demand applications requiring constant pressure control.

SPECIFICATIONS

- Flow rate up to 600 GPM
- **Head** up to 1,040′ TDH
- Supply voltage:
 1Ø, 230V ± 10% up to 3 HP
 3Ø, 460V ± 10% for 3 15 HP
- Output voltage:
 3Ø, 230V up to 3 HP
 3Ø, 460V 3 15 HP
- Input Frequency: 50 or 60 Hz
- External control voltage:
 0-5 VDC; 0-10 VDC; 0-20 mA

- Protection class
 - panel: NEMA 4X
 - drive: NEMA 4 up to 15 HP
 - outdoor use
- Maximum HP: 15 HP
- Soft motor start
- Vertical design pump:
 e-SV series (motor insulation class, F, TEFC enclosure)
- Maximum operating pressure: 360 PSI
- Maximum temperature of pumped liquid: 180° F

Commercial Water

MARKETS AND APPLICATIONS

(continued)

WATER SUPPLY AND PRESSURE BOOSTING

- Pressure boosting in buildings, hotels, residential complexes
- Pressure booster stations, supply of water networks
- Booster packages

WATER TREATMENT

- Ultrafiltration systems
- Reverse osmosis systems
- Water softeners and de-mineralization
- Distillation systems
- Filtration

LIGHT INDUSTRY

- Washing and cleaning plants (washing and degreasing of mechanical parts, car and truck wash tunnels, washing of electronic industry circuits)
- Commercial washers
- Firefighting system pumps

IRRIGATION AND AGRICULTURE

- Greenhouses
- Humidifiers
- Sprinkler irrigation

HEATING, VENTILATION AND AIR CONDITIONING (HVAC)

- Cooling towers and systems
- Temperature control systems
- Refrigerators
- Induction heating
- Heat exchangers
- Boilers
- Water recirculation and heating

MARKETS AND APPLICATIONS (continued)

MUNICIPAL, AGRICULTURAL, LIGHT INDUSTRY, WATER TREATMENT, HEATING AND AIR CONDITIONING

APPLICATIONS

- Handling of water, free of suspended solids, in the municipal, industrial and agricultural markets
- Pressure boosting and water supply systems
- Fire fighting jockey pumps
- Irrigation systems
- Wash systems
- Water treatment plants: reverse osmosis
- Handling of moderately aggressive liquids, demineralized water, water and glycol, etc.
- Circulation of hot and cold water for heating, cooling and conditioning systems
- Boiler feed

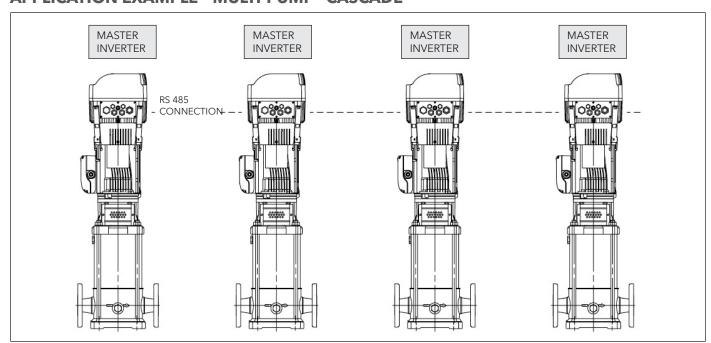
SPECIFICATIONS

PUMP

The e-SV pump is a non-self priming vertical multistage pump coupled to a standard motor.

The liquid end, located between the upper cover and the pump casing, is held in place by tie rods.

The pump casing is available with different configurations and connection types.


• Delivery: up to 600 GPM

- Head: up to 1200 feet
- Temperature of pumped liquid: -20°F to 250°F (-30°C to 120°C) standard version
- Maximum operating pressure
 - with oval flanges: 230 PSI (15 bar)
 - with round flanges or Victaulic: 360 PSI (25 bar)
 - SV33, 46: 230, 360 or 575 PSI (16, 25 or 40 bar)*
 - SV 66, 92: 230 or 360 PSI (16 or 25 bar)*
- Direction of rotation: clockwise looking at the pump from the top down (marked with an arrow on the adapter and on the coupling).

MOTOR

- Standard NEMA TC Frame motors totally enclosed fan cooled.
- Efficiency is 75.5% or higher, Class "F" insulation
- 3500 RPM nominal
- Standard voltage:
 - Single phase version: 115-208/230 V, 60 Hz up to 3 HP or 208-230 V for 5 HP
 - Three phase version, 2 pole: 208-230/460 V, 60 Hz up to 75 HP
- * Based on pump staging

APPLICATION EXAMPLE - MULTI-PUMP "CASCADE"

With the "master" version of the Hyrdrovar, it is possible to connect up to 8 Hydrovar controller pumps together in parallel. Complete lead/lag and auto alternation.

CHARACTERISTICS OF THE e-SV SERIES PUMP USED IN BOOSTER PACKAGE

1SV - 22SV e-SV VERTICAL MULTI-STAGE PUMPS

- High hydraulic efficiency for significant energy savings.
- Multistage centrifugal vertical electric pumps. All metal parts in contact with pumped liquid are made of 304/316 stainless steel.
- A version: round flanges, in-line discharge and suction ports, AISI 304
- B version: ANSI flanges, in-line discharge and suction ports, AISI 316

- Reduced axial thrusts enable the use of standard motors that are easily found on the market.
- Standard Baldor, NEMA motors
- Easy maintenance. No special tools required for assembly or disassembly.
- ANSI/NSF 61 certified by CSA for potable drinking water.

33SV - 125SV e-SV MULTI-STAGE PUMPS

- Vertical multistage centrifugal pump with impellers, diffusers and outer sleeve made entirely of stainless steel, and with pump casing and upper head made of cast iron in the standard version.
- High hydraulic efficiency for significant energy savings.
- Innovative axial load compensation system on pumps with higher head. This ensures reduced axial thrusts and enables the use of standard motors that are easily found on the market.

- Standard NEMA Baldor® motors.
- Mechanical seal can easily be replaced without disassembling the motor from the pump.
- Mechanical sturdiness and easy maintenance. No special tools required for assembly or disassembly.
- ANSI/NSF 61 certified by CSA for potable drinking water.

REFERENCE STANDARDS

- cUL Listed as pumping packaged unit, 42UC (available soon)
- VFD (Hydrovar) UL recognized
- Baldor motor UL recognized
- Pumps meet ANSI/NSF 61 certification by CSA for potable drinking water
- Pumps meet ANSI/UL778 standards
- Control/disconnect meet UL508A standards

MAIN CHARACTERISTICS OF FREQUENCY CONVERTERS USED IN THE PACKAGED BOOSTER SETS

The booster uses a **Hydrovar**° variable frequency drive, an automatic device that adjusts the speed of the electric pump in order to maintain **constant pressure** in the system.

Converters with power up to 15 HP are **mounted directly on to the motor**. The pressure is measured by a **pressure transmitter** which uses a standard **4..20 mA** current signal. The system pressure value can be read on the converter's display. A simple user interface allows you to set the desired pressure value for optimal adjustment, as well as to **view the operating data**, such as the hours of operation and any alarms triggered. Included diagnostic menu to view temperature, current and voltage values facilitates diagnostics and failure analisys. Indicator lights signal power status, pump running and malfunctions.

A password is required to access sensitive settings that allow you to program the Hydrovar in order to adapt it to any control requirements, such as flow resistance compensation, external control, periodic testing and so on. When more than one pump is used, the converters exchange information with each other through an RS485 serial line which can connect up to 8 Hydrovar devices plus one external unit for remote control. The Pumplink and Pump-watcher dedicated systems, connected to the Hydrovar®, enable remote control through a traditional telephone line or mobile telephony. A serial port available as standard up to 15 HP allows you to control the Hydrovar® converters from a Modbus® field serial bus line.

The converter is equipped with two **potential-free relays** which can be used for **remote signalling** of pump running and malfunction status, plus a programmable voltage **analogue output** for signalling the frequency or pressure. Standard version with two sensor inputs for implementing of two actual values signals within one system (min/max, difference) or for a second sensor for safety reasons. Specific digital **inputs** are used for protection against **water failure**, **motor overtemperature**, as well as for external enable signal and remote control. The converter also incorporates a dry running protection function via an adjustable **minimum pressure** threshold.

FCC Class A filter standard for Hydrovar three-phase power supply.

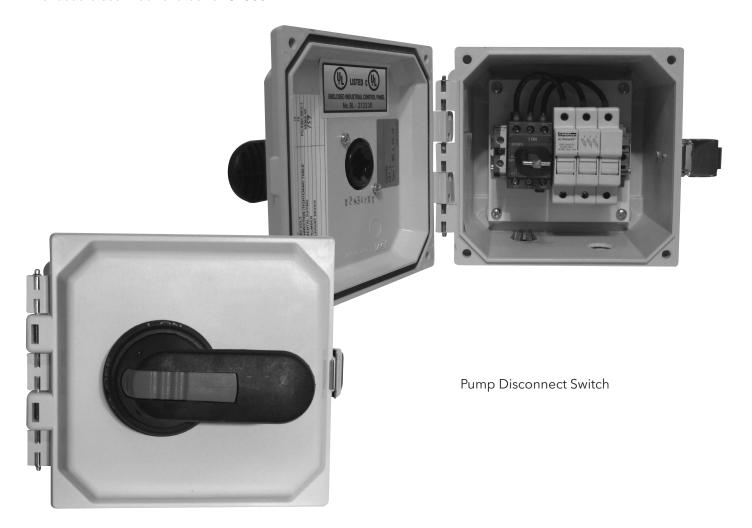
E.g. Industrial areas, technical areas of any building fed from a dedicated transformer are examples of environment locations.

FCC Class B filter standard for Hydrovar single-phase power supply.

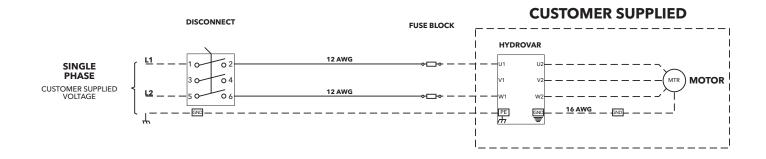
E.g. Houses, apartments, commercial premises or offices in a residential building are examples of environment locations.

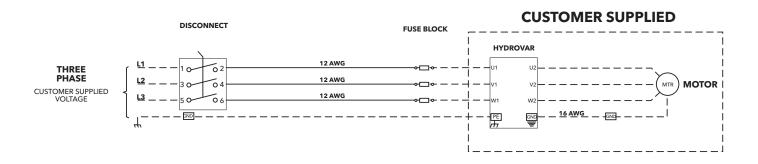
Further information is available in the Hydrovar manual.

HYDROVAR SPECIFICATIONS


		Motor				
HP	Model *	Power Supply (V)	NEMA Class	Install.	Power Supply (V)	HP
2	HVM1202	1x230	4	TEFC Motor	3x230	2
3	HVM1203	1x230	4	TEFC Motor	3x230	3
3	HVM3403	3x460	4	TEFC Motor	3x460	3
5	HVM3405	3x460	4	TEFC Motor	3x460	5
71/2	HVM3407	3x460	4	TEFC Motor	3x460	7½
10	HVM3410	3x460	4	TEFC Motor	3x460	10
15	HVM3415	3x460	4	TEFC Motor	3x460	15

ELECTRICAL PANELS (Packaged Hydrovar® Series)


The Package comes with a **fused disconnect** on which are installed automatic **line protection fast acting fuses** for each drive. Class J, 600 volt.


Single-pump Packages are supplied as standard with an electrical panel encased in NEMA 4X enclosure, with 2-pole or 3-pole (3 phase) up to 30 amps and featuring a **main switch**.

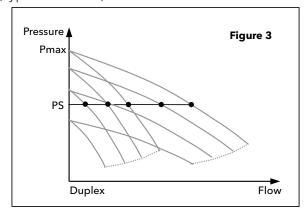
The fused disconnect is rated for UL508A.

FUSED DISCONNECT BOX

Disconnect Part Number	Input Voltage	Disconnect	HP / AMP Rating	Wire Range	Tightening Torque	Fuse Supplier	AMP Rating	Part Number	Voltage Rating
HFD512C1	230/1/60	OT25F3	2 HP / 25A	#18-8AWG	7 IN/LB	Bussman	20	KTK-R-20	600V
HFD512E1	230/1/60	OT40F3	3 HP / 40A	#18-8AWG	7 IN/LB	Bussman	30	KTK-R-30	600V
HFD534A1	460/3/60	OT16F3	3 HP / 16A	#18-8AWG	7 IN/LB	Bussman	10	KTK-R-10	600V
HFD534B1	460/3/60	OT16F3	3 HP / 16A	#18-8AWG	7 IN/LB	Bussman	15	KTK-R-15	600V
HFD534C1	460/3/60	OT25F3	3 HP / 25A	#18-8AWG	7 IN/LB	Bussman	20	KTK-R-20	600V
HFD534C2	460/3/60	OT25F3	3 HP / 25A	#18-8AWG	7 IN/LB	Bussman	20	KTK-R-20	600V
HFD534E2	460/3/60	OT40F3	3 HP / 40A	#18-8AWG	7 IN/LB	Bussman	30	KTK-R-30	600V

Note: Recommended protection (not included with drive only). This fused disconnect is available as part of the Packaged Hydrovar, see price book.

OPERATION DESCRIPTION


PACKAGED HYDROVAR WITH PRESSURE TRANSDUCER CONTROL

The starting and stopping of the pumps are determined based on the pressure values set on the controller. Each frequency converter is connected to a pressure transducer.

The controllers exchange information with each other and provide for cyclic changeover.

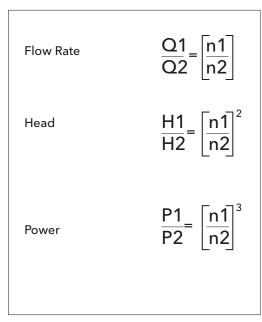
The figure shows the operating mode of a two-pump booster set (Typical Field Set).

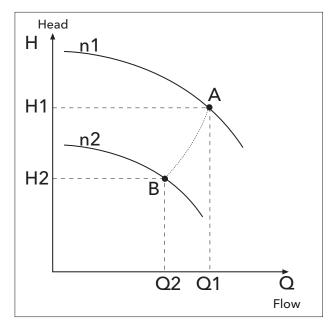
- On demand, water is drawn from the tank.
- When the pressure drops belows the PS setting the first pump starts and the speed is adjusted to maintain a costant pressure as demand increases.
- If the water consumption increases and the pump reaches maximum speed, the second pump starts and the speed is adjusted to maintain constant pressure.
- When demand decreases, the speed is reduced until minimum speed is reached and one of the pumps are switched off.
- If consumption keeps decreasing the pump slows down, fills the tank and stops at the pressure setting.

OPERATING CHARACTERISTICS AND LIMITS

Type of pumped liquids	Water containing no gas or corrosive and/or aggressive substances
Fluid temperature	Above 0° F to 180° F, pressure transducer limited
Ambient temperature	Above 0° F to 104° F, VFD/Display, keep away from direct sun
Maximum operating pressure	360 PSI (Pump without transducer)
Minimum inlet pressure	According to NPSH curve and losses, with a minimum margin of 0.5 m
Maximum inlet pressure	The inlet pressure added to the pressure of the pump at zero flow must be lower than the maximum operating pressure of the set (suction and discharge).
Installation	Indoors/outdoors, protected from the direct sun. Away from heat sources. Maximum elevation 3300 feet ASL. Maximum humidity 50% without condensation.
Hourly starts	Maximum 60 up to 10 HP. Above 10 HP and up, maximum 40 starts per hour. Variable speed drive starts.
Sound emission	See table

^{*} Note: For higher temperature it is necessary to use special materials (only on request).


NOISE EMISSION LEVELS


60 Hz 3	500 RPM	LpA (dB ±4)
НР	NEMA Motor Frame	PHV
1	56	< 70
2	56	< 70
3	56	< 70
5	145	< 70
7½	182-184	< 70
10	215	71
15	254	73

^{*} Note: Adjusted from 50 Hz data, may vary.

PERFORMANCE WITH VARYING SPEED FOR CENTRIFUGAL PUMPS

Fitting the electric pump with a variable speed drive makes it possible to vary the pump rotation speed, normally according to the system pressure parameter. **Variations in electric pump speed** result in **modified performances** according to the equivalence relations, called affinity laws.

n1 = initial speed; n2= speed required.
Q1 = initial flow rate; Q2= flow rate required.
H1 = initial head; H2= head required.
P1 = initial power; P2= power required

Frequency ratios can be used instead of speed in practical applications, keeping 30 Hz as the bottom limit.

Example: 2-pole 50 Hz electric pump n1 = 2900 (point A)

Flow rate (A) = 100 l/min; Head (A) = 50 m

By reducing the frequency to 30 Hz the speed is reduced to approx. n2 = 1740 rpm (point B)

Flow rate (B) = 60 l/min; Head (B) = 18 m

The power of the new work point B is cut to about 22% of the initial power.

SIZING THE DIAPHRAGM TANK IN SYSTEMS WITH SPEED VARIATION

Variable speed booster sets need **smaller tanks** compared to traditional systems. Generally speaking, a tank with a capacity of just 20% of the nominal capacity of a single pump, expressed in gallons per minute, is needed. The **gradual starting** of the pumps controlled by the drive reduces the need to limit the number of hourly starts; the main purpose of the tank is to compensate for small system losses, stabilize the pressure and make up for pressure variations caused by sudden demand (fast acting valves).

Make the following calculation:

Set made up of three electric pumps, each with a maximum flow rate of 100 GPM, for a total capacity of 300 GPM. The **volume** required for the tank is 20 gallons. This is total capacity, not drawdown. Mount downstream of the check valves in discharge manifold.

Goulds Water Technology

Commercial Water

SELECTING A PACKAGE

The first thing to do when selecting a package is to determine the quantity of water required and the pressure it must supply.

Calculating the Flow Rate

The quantity of water called **water requirement** depends on the type of users, e.g. homes, offices, schools, as well as their number. The theoretic requirement is the total amount of water required by all the users. In actual fact, since it is very unlikely that there should be a simultaneous demand by all the users, the **real requirement** is lower than the theoretic one.

Calculating the Head

The pressure required depends on the type of user. A number of factors must be taken into account, including the **height of the building**, the suction conditions and the flow resistance in the pipes.

Selecting A Booster Set

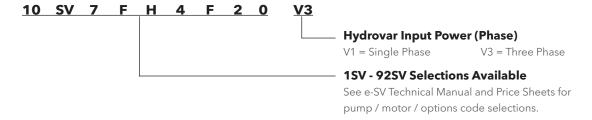
According to the required flow rate and head values, it is possible to identify the most suitable size of e-SV pump. On two-pump sets the pumps normally act as **back-up for one another**. A single pump is normally sufficient to provide for average requirements, while in conditions of high demand the back up pump may be called in to assist. With the **cyclic changeover** function duty assignment is rotated to ensure both pumps remain active and with even running hours, so wear is uniform and the use factor is reduced for longer pump life. This system also ensures **continuity of operation** in case one of the pumps needs maintenance. The Hydrovar provides automatic lead/lag, alternation when programmed in multi-control and wired via RS485 communication terminals.

Tank

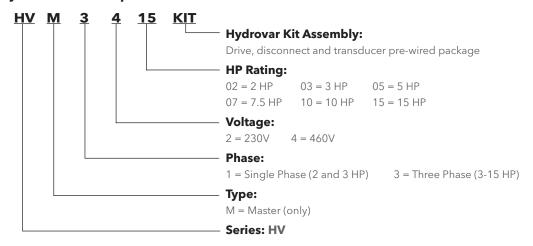
Frequent demand or **small system losses** determine pressure variations that may be compensated for by using a **tank**. Correct selection of a diaphragm tank **reduces the number of pump starts** and, if it is installed near the booster set, helps reduce the effect of water hammer, or fast acting flush valves.

The booster sets are **ready** for installation of diaphragm tanks directly on the delivery manifold, and additional tanks can be connected to the unused end of the manifold.

For peak performance, variable speed booster sets need **smaller tanks** compared to traditional systems. Generally speaking, a tank with a capacity of just 20% of the nominal capacity of a single pump, expressed in gallons per minute, is required. Example: If my pump is sized for 100 GPM, then we would size a 20 gallon (total capacity) diaphragm tank.


Pre-charge the tank with air, 10-15 PSI below your system pressure. Charge dry tank without water pressure or before installing in system.

PART NUMBERING / IDENTIFICATION CODES


PACKAGED HYDROVAR VARIABLE SPEED e-SV PRODUCT LINE NUMBERING SYSTEM

The various versions are identified by a product code number on the pump label. The number is also the catalog number for the package. The meaning of each digit in the product code is shown below.

Packaged Hydrovar/e-SV Example Product Code

Hydrovar Kit Example Product Code

- HV Hydrovar Variable Speed Drive
- M Master Drive (full control and communications)
- 3 3 Phase input power
- 4 460 Volt inut power
- 15 Horsepower rating
- KIT Hydrovar Kit Assembly

Note: Packages and KITS will only be available with Master Drive Hydrovar. 300 PSI transducer is supplied as standard. All e-SV motors will be TEFC 3-phase construction.

CAUTION: Optional 500 PSI transducer measures accurately to 400 PSI. Pump, flanges and other piping system components must also be rated for the maximum system pressure. See e-SV technical manual and other appropriate technical manuals to verify all equipment is rated to maximum system pressure.

Building the order number for the Packaged e-SV Hydrovar System

1) The e-SV pump order number is built and priced using the e-SV Technical manual, selection software, and/or the price book.

Note: The Order Number System is shown on page 5 in this book.

All Packaged e-SV Hydrovars systems use three phase TEFC motors.

- 2) The Pump and motor option requirements are added to the order number from the same e-SV literature.
- 3) The option suffix V1 or V3 is added to pump order number to complete the package.

Example: Add V1 for 230 volt 1 ph Hydrovar input power supplies

Add V3 for 460 volt 3 ph Hydrovar input power supplies

4) The Packaged Price list adders are listed on page 6 in the e-SV Price book.

Note: The Package Price adders are also listed in the Variable Speed Pumping System Controller's Price book.

5) The complete Package Hydrovar list price will be the addition of the e-SV pump, motor, options, and the Packaged list price adder.

Packages are shipped completely assembled and prewired.

Packaged e-SV Hydrovar Options

	Suffix	Hydrovar Package
	\/1	2 HP 230 volt 1 ph
	V1	3 HP 230 volt 1 ph
		3 HP 460 volt 3 ph
Addition of Hydrovar Package		5 HP 460 volt 3 ph
riyarovar rackage	V3	7½ HP 460 volt 3 ph
		10 HP 460 volt 3 ph
		15 HP 460 volt 3 ph

- Hydrovar input power supply volts and phase are listed above.
- All Packaged e-SV Hydrovar systems use three phase TEFC TC frame Baldor motors.
- Master Hydrovar VSD is used on all packages.
- Fuse box contains class J or equal fast acting fuses.
- 300 PSI transducer is supplied as standard with package.
- Tanks, piping and valves sold separately.

Packaged Hydrovar Kits

Packaged Hydrovar Kits are able to retrofit the e-SV, and other constant speed pumps in the field. Selections can be made for pumps up to 15 hp. The kits include the Hydrovar Master Drive, fused disconnect with bracket, wiring, conduit and 300 psi transducer. The Drive will be preporgramed for single pump use. All the components are UR listed. The Kit will be fully assembled, prewired and packaged.

Building the Packaged Hydrovar Kit Order Number

Select Package Hydrovar Kit based on input power supply and existing pump motor HP

Note: The Order Number System is shown on page 5 in this book All Packaged Hydrovars Kits are only to used with three phase TEFC motors

Kit includes Hydrovar Master Drive, fused disconnect with bracket, wiring and conduit

Order Number	Volts	Phase	HP	Description						
HVM1202KIT	230	1	2	Hydrovar Kit 2 HP 1/230V						
HVM1203KIT	230	I	3	Hydrovar Kit 3 HP 1/230V						
HVM3403KIT			3	Hydrovar Kit 3 HP 3/460V						
HVM3405KIT		3			5	Hydrovar Kit 5 HP 3/460V				
HMV3407KIT	460		7½	Hydrovar Kit 7 1/2 HP 3/460V						
HMV3410KIT										10
HVM3415KIT			15	Hydrovar Kit 15 HP 3/460V						

- Hydrovar input power supply volts and phase are listed above
- All Packaged Hydrovar kits are be only used on three phase TEFC TC frame Baldor motors
- Master Hydrovar Drive is used on all kits
- Fuse box contains class J or equal fast acting fuses
- 300 psi transducer is supplied as standard with kit

	Maxi-	Motor	Selection (using SF		Motor Selection using Hydrovar (1.0 SF)		Shut-	Shut-	Shut-	Casing / Sleeve	Pump																																	
No. of impellers	mum HP draw	Rated HP		MA FRAME	Rated HP	NEMA I	MOTOR ME	off TDH (Feet)	off TDH (psi)	off TDH (Bar)	Pressure rating (standard assy.)	Flange Rating																																	
		пР	ODP	TEFC	ПР	ODP	TEFC	(reet)	(1001)	(Bai)																																			
25	2.88							720	312	21.5																																			
24	2.76							695	301	20.7																																			
23	2.67	3.00						665	288	19.8																																			
22	2.53			3.00			635	275	18.9																																				
21	2.42			3.00			610	264	18.2																																				
20	2.30									580	251	17.3																																	
19	2.19							550	238	16.4																																			
18	2.07	2.00						520	225	15.5																																			
17	1.96																	485	210	14.5]																								
16	1.84			2.00	2.00		455	197	13.6																																				
15	1.73	1.50			2.00			425	184	12.7																																			
14	1.61	1.50	5,	6C	1.50	1.50	5.4	SC .	400	173	11.9	25 Bar	Class 250 /																																
13	1.50						30		375	162	11.2	(362 psi)	300																																
12	1.38	1.50					1.50	1.50																																	345	149	10.3		
11	1.27										315	136	9.4																																
10	1.15	1.00														290	126	8.7																											
9	1.04	1.00						255	110	7.6																																			
8	0.92				1.00			230	100	6.9																																			
7	0.81	0.75	0.75	0.75	0.75	0.75		1.00	1.00			200	87	6.0																															
6	0.69			0.75			175	76	5.2																																				
5	0.58				0.75			145	63	4.3																																			
4	0.46	0.50		0.50			115	50	3.4																																				
3	0.35	0.50			0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50			85	37	2.5										
2	0.23							60	26	1.8																																			

3SV 3500 RPM

	Maxi		Motor Selection using SF			Motor Selection using Hydrovar (1.0 SF)			Shut-	Shut-	Casing / Sleeve	Pump							
No. of impellers	mum HP draw	Rated HP	NE MOTOR		Rated HP		NEMA MOTOR FRAME		off TDH (psi)	off TDH (Bar)	Pressure rating (standard assy.)	Flange Rating							
		HF	ODP	TEFC	ПР	ODP	TEFC	(Feet)	(psi)	(2017									
20	4.16							720	312	21.5									
19	3.95	5.00	182TC	184TC				680	294	20.3									
18	3.74	3.00	10210	10410	5.00	182TC	184TC	645	279	19.2									
17	3.54				3.00	10210	10410	610	264	18.2									
16	3.33							575	249	17.2									
15	3.12							540	234	16.1									
14	2.91	3.00			3.00			500	217	14.9									
13	2.70							465	201	13.9									
12	2.50					3.00			430	186	12.8	25.0	Class						
11	2.29																395	171	11.8
10	2.08	2.00						360	156	10.7	(302 þ31)	300							
9	1.87		56	SC .	2.00			320	139	9.5									
8	1.66	1.50			2.00	56	SC .	285	123	8.5									
7	1.46	1.50	1				250	108	7.5										
6	1.25	1.50			1.50			215	93	6.4									
5	1.04	1.00						180	78	5.4									
4	0.83	0.75			1.00	<u> </u>		145	63	4.3									
3	0.62	0.50					0.75		105	45	3.1	.1							
2	0.42	0.50			0.50			70	30	2.1									

	Maxi-	Motor	Selection (using SF		r Selection Irovar (1.0		Shut-	Shut-	Shut-	Casing / Sleeve	Pump								
No. of impellers	mum HP draw	Rated HP	NEMA MOTOR FRAME		Rated HP		MOTOR AME	off TDH (Feet)	off TDH (psi)	off TDH (Bar)	Pressure rating (standard assy.)	Flange Rating								
		ПР	ODP	TEFC	ПР	ODP	TEFC	(1001)	(100.)	(=)										
20	6.52							715	310	21.3										
19	6.19	7.50	184	4TC		18	4TC	685	297	20.4										
18	5.87				7.50			650	282	19.4										
17	5.54							615	266	18.4										
16	5.22									575	249	17.2								
15	4.89						540 234	234	16.1											
14	4.24	5.00	182TC	184TC		182TC 184	184TC	505	219	15.1										
13					5.00			470	204	14.0										
12	3.91				5.00			430	186	12.8	05.5	Class								
11	3.59													395	171	11.8	25 Bar (362 psi)	250 /		
10	3.26							360	156	10.7	(302 þ31)	300								
9	2.93	3.00						320	139	9.5										
8	2.61			3.0		3.0	3.00	3.00)0					285	123	8.5				
7	2.28	2.00			ı					250	108	7.5								
6	1.96	2.00	56C	- 56C	– 56C	- 56C	- 56C	56C	56C	56C	2.00 56C	2.00	5 <i>6</i>	56	6C	220	95	6.6		
5	1.63	1.50]		2.00	2.00	2.00			180	78	5.4								
4	1.30	1.50	1.50	1.50		4.3	3													
3	0.98	1.00	1		1.00		110	48	3.3	1.3										
2	0.65	0.75	1		0.75			70	30	2.1	1									

10SV 3500 RPM

No of Maxi-		Motor Selection using SF				Motor Selection using Hydrovar (1.0 SF)			Shut-	Shut-	Casing / Sleeve	Pump
No. of impellers	mum HP draw	w Rated	NEMA MOTOR FRAM		Rated HP	NEMA MOTOR FRAME		off TDH (Feet)	off TDH (psi)	off TDH (Bar)	Pressure rating (standard assy.)	Flange Rating
		ПР	ODP	TEFC	ПР	ODP	TEFC	(1001)	(1001)	(2017		
12	10.70				15.00	215TC	254TC	690	299	20.6		
11	9.81	10.00	213TC	215TC				630	273	18.8		
10	8.92				10.00	213TC	215TC	575	249	17.2		
9	8.03							520	225	15.5		
8	7.14	7.50	184	ITC				460	199	13.7		
7	6.24				7.50	7.50 184		400	173	11.9	25 Bar	Class
6	5.35								340 147 10.1 (362 ps	(362 psi)	250 / 300	
5	4.46	5.00	182TC	184TC	F 00	10070	104TC	285	123	8.5		
4	3.57				5.00	182TC	184TC	225	97	6.7		
3	2.68	3.00			3.00			170	74	5.1		
2	1.78	2.00	56	SC .	2.00	56	5C	115	50	3.4		
1	0.89	0.75			1.00			60	26	1.8		

15SV 3500 RPM

	Maxi-	Motor	Selection (using SF		Motor Selection using Hydrovar (1.0 SF)			Shut-	Shut-	Casing / Sleeve	Pump	
No. of impellers	mum HP draw	draw Rated	NE MOTOR	MA FRAME	Rated	FKAIVIE		off TDH (Feet)	off TDH (psi)	off TDH (Bar)	Pressure rating (standard assy.)	Flange Rating	
		HP	ODP	TEFC	HP	ODP	TEFC	(1001)	(psi)	(Bai)			
7	13.30	15.00	215TC	254TC	15.00	215TC	254TC	485	210	14.5			
6	11.40	10.00	213TC	215TC	13.00	21310	25410	420	182	12.5			
5	9.50	10.00	21310	21310	10.00	213TC	215TC	345	149	10.3		Class	
4	7.60	7.50	184TC		10.00	21310	21510	275	119	8.2	25 Bar (362 psi)	250 /	
3	5.70	5.00	182TC	184TC	184TC	7.50	184TC	184TC	210	91	6.3	(302 psi)	300
2	3.80	3.00	10210		5.00	182TC	10410	140	61	4.2			
1	1.90	2.00	56	SC .	2.00	56	6C	70	30	2.1			

	• • • • • • • • • • • • • • • • • • • •											
	Maxi-	Motor	Selection (using SF	Motor Selection using Hydrovar (1.0 SF)			Shut-	Shut-	Shut-	Casing / Sleeve	Pump
No. of impellers	marina	Rated HP		MA R FRAME Rated		NEMA MOTOR FRAME		off TDH (Feet)	off TDH (psi)	off TDH (Bar)	Pressure rating (standard assy.)	Flange Rating
		пР	ODP	TEFC	HP	ODP	TEFC	(1001)	(100.7)	(201)		
6	14.46	15.00	215TC	25470	15.00	215TC	254TC	440	191	13.1		
5	12.05	15.00	2151C	254TC	15.00	21310	2541C	365	158	10.9		
4	9.64	10.00	213TC	215TC	10.00	213TC	215TC	295	128	8.8		Class
3	7.23	7.50	184TC			184TC	184TC	220	95	6.6	(362 psi)	250 / 300
2	4.82	5.00	184TC 184TC		5.00	182TC	10410	245	106	7.3	7	
1	2.41	3.00	56	56C 3	3.00	0 56C		70	30	2.1		

33SV 3500 RPM

	Maxi-	Motor Selection using SF				Motor Selection using Hydrovar (1.0 SF)			Shut-	Shut-	Casing / Sleeve	Pump
No. of impellers	mum HP draw	Rated		MA FRAME	Rated		MOTOR AME	off TDH (Feet)	off TDH (psi)	off TDH (Bar)	Pressure rating (standard assy.)	Flange Rating
		HP	ODP	TEFC	HP	ODP	TEFC	(1661)	(631)	(Dai)		
3/1	14.70	15.00		254TC				310	133	9.0		
3/2	13.20	15.00	215TC	2541C	15.00		254TC	281	121	8.0		
2	10.90	10	21310	04570		215TC		225	97	7.0		Class
2/1	9.40	10		215TC	10		04570	196	84	6.0	25 Bar (362 psi)	125 /
2/2	7.90	7.50			10		215TC	167	72	5.0	(302 p31)	150
1	5.40	-	5 184		7.5	184TC		113	49	3.0		
1/1	4.00	3			5.00			84	36	3.0		

46SV 3500 RPM

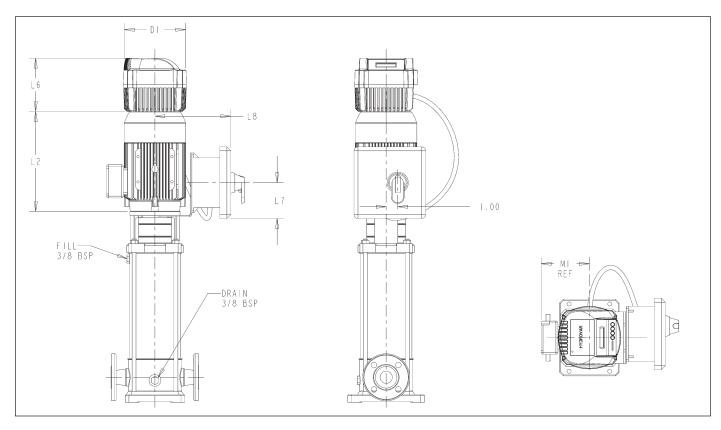
	No. of Maxi-		Selection (using SF	Motor Selection using Hydrovar (1.0 SF)			Shut-	Shut-	Shut-	Casing / Sleeve	Pump
No. of impellers	No. of mum		NEMA MOTOR FRAME		Rated	NEMA MOTOR FRAME		off TDH (Feet)	off TDH (psi)	off TDH (Bar)	Pressure rating (standard assy.)	Flange Rating
		HP	ODP	TEFC	HP	ODP	TEFC	(1001)	(631)	(Bui)		
2/1	14.50	15.00		254TC	15	215TC	25.470	226	97	6.7		
2/2	12.80	15.00	215TC				254TC	200	86	6.0	25 Bar	Class 125 /
1	8.50	10.00		215TC	10.00		215TC	127	55	3.8	(362 psi)	150
1/1	6.70	7.50	184	1TC	7.50	184	4TC	102	44	3.0		

66SV 3500 RPM

	Maxi-	Motor	Selection (using SF	Motor Selection using Hydrovar (1.0 SF)			Shut-	Shut-	Shut-	Casing / Sleeve	Pump
No. of impellers	mum HP draw	Rated HP	NEMA MOTOR FRAME		Rated		MOTOR ME	off TDH (Feet)	off TDH (psi)	off TDH (Bar)	Pressure rating (standard assy.)	Flange Rating
		пР	ODP	TEFC	HP	ODP	TEFC	(1.000)	(62.)	(50.1)		
1	12.20	15.00	215TC	254TC	15.00	215TC	254TC	142	61	4.2	25 Bar	Class 125 /
1/1	9.20	10.00	21310	215TC	10.00	21310	215TC	115	49	3.4	(362 psi)	150

	Maxi-				Motor Selection using Hydrovar (1.0 SF)			Shut-	Shut-	Shut-	Casing / Sleeve	Pump
No. of impellers	mum HP draw	Rated HP	NEMA MOTOR FRAME		Rated HP		NEMA MOTOR FRAME		off TDH (psi)	off TDH (Bar)	Pressure rating (standard assy.)	Flange Rating
		ПР	ODP	TEFC	ПР	ODP	TEFC	(Feet)	(65.7	(20.7		
1/1	6.70	15.00	215TC	254TC	15.00	215TC	254TC	127	55	3.8	25 Bar (362 psi)	Class 125 / 150

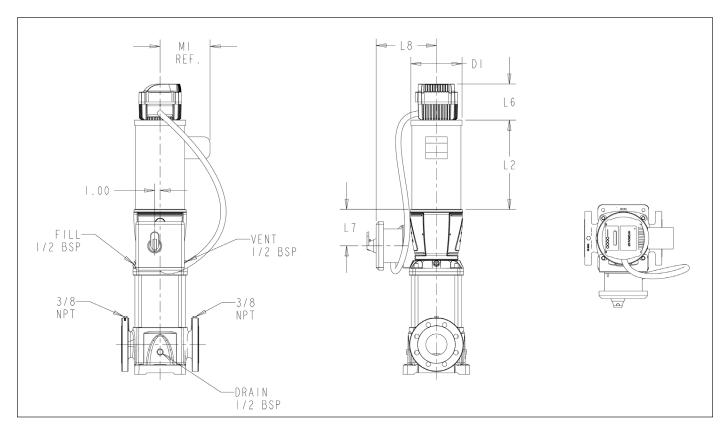
Goulds Water Technology


Commercial Water

MOTOR DATA

НР	Phase	Enclosure	Nameplate Voltage	NEMA Frame	Part Number	FLA	SFA	① LRA	S.F.	Efficiency	Insulation Class
2		TEFC	208-230/460	56C	V08A32E2BB2S	6.2- 5.8/2.9	6.8- 6.4/3.2	20.8	1.15	80.0%	В
		PE-TEFC	208-230/460	56C	V08A32E5BB2S	5.3-5/2.5	5.9- 5.6/2.8	25.9	1.15	85.5%	F
3		TEFC	208-230/460	56C	V09A32E2BB2S	8.1- 7.6/3.8	9.5- 8.6/4.3	32.9	1.15	82.5%	F
3		PE-TEFC	208-230/460	182TC	V09A32F5BD2S	7.9- 7.2/3.6	9.0- 8.2/4.1	33.1	1.15	86.5%	F
5		TEFC	208-230/460	184TC	V10A32E2BD2S	12.6- 11.6/5.8	14.6- 13.4/6.7	54	1.15	87.5%	F
	3	PE-TEFC	230/460	184TC	V10A32F5BD2S	11.8/5.9	13.4/6.8	57.2	1.15	88.5%	F
7.5		TEFC	208-230/460	184TC	V11A32E2BD2S	18.5- 17.4/8.7	21.7- 19.6/9.8	98.8	1.15	88.5%	F
		PE-TEFC	230/460	213TC	V11742APE	17.8/8.9	20.2/10.1	83.4	1.15	91.0%	F
10		TEFC	208-230/460	215TC	V12A32E2BE2S	25.7- 24/12	30.5- 27.6/13.8	81.8	1.15	89.5%	F
		PE-TEFC	230/460	215TC	V12A32F5BE2S	23.8/11.9	27.6/13.7	112	1.15	91.0%	F
15		TEFC	208-230/460	254TC	V13A32E2BK2S	37.5- 34/17	43- 39/19.5	152	1.15	90.2%	F
13		PE-TEFC	208-230/460	254TC	V13742PE	37- 34.4/17.2	43.8- 39.6/19.8	112	1.15	91.7%	F

① Locked Rotor Amps are for high voltage only. Above data is for Baldor® TC and TSC frame motors. Specifications subject to change without notice.


PACKAGED HYDROVAR SERIES – 1SV - 22SV DIMENSIONS

Frame					Weight (lbs.)				
(3 PH TEFC)	HP	L2	L6	L7	L8	MI (Ref.)	DI Max.	Hydrovar	Disconnect Box
56C	2	11.17			11.60	5.23			
300	3	11.16			11.00	5.74	7.19	10.15	
180TC	3	12.30				5.72		10.15	
16010	5	13.68	6.70	3.50		6.87	8.50		2.5
213TC	7.5	15.26			12.00				
215TC	10	16.39				8.05	10.28	17.71	
254TC	15	19.83							

NOTE: See e-SV Technical Manual for Liquid-End Dimensions.

PACKAGED HYDROVAR SERIES – 33SV - 92SV DIMENSIONS

Frame				Dimens	ions (in)			Weight (lbs.)		
(3 PH TEFC)	HP	L2	L6	L7	L8	MI (Ref.)	DI Max.	Hydrovar	Disconnect Box	
56C	3	11.16			11.60	5.74	7.19			
180TC	3	12.30				5.72	7.17	10.15		
18010	5	13.68	6.70	3.50		6.87	8.50		2.5	
213TC	7.5	15.26	0.70	3.50	12.00				2.5	
215TC	10	16.39				8.05	10.28	17.71		
254TC	15	19.83								

NOTE: See e-SV Technical Manual for Liquid-End Dimensions.

Goulds Water Technology

Commercial Water

NPSH

The minimum operating values that can be reached at the pump suction end are limited by the onset of cavitation.

Cavitation is the formation of vapor-filled cavities within liquids where the pressure is locally reduced to a critical value, or where the local pressure is equal to, or just below the vapor pressure of the liquid.

The vapor-filled cavities flow with the current and when they reach a higher pressure ares the vapor contained in the cavities condenses. The cavities collide, generating pressure waves that are transmitted to the walls. These, being subjected to stress cycles, gradually become deformed and yield due to fatigue. This phenomenon, characterized by a metallic noise produced by the hammering on the pipe walls, is called incipient cavitation.

The damage caused by cavitation may be magnified by electrochemical corrosion and a local rise in temperature due to the plastic deformation of the walls. The materials that offer the highest resistance to heat and corrosion are alloy steels, especially austenitic steel. The conditions that trigger cavitation may be assessed by calculating the total net suction head, referred to in technical literature with the acronym NPSH (Net Positive Suction Head).

The NPSH represents the total energy (expressed in feet) of the liquid measured at suction under conditions of incipient cavitation, excluding the vapor pressure (expressed in feet) that the liquid has at the pump inlet.

To find the static height (hz) at which to install the machine under safe conditions, the following formula must be verified:

$$h_p + h_z \ge (NPSHr + 2 feet) + h_f + h_{pv}$$

where:

- h_p is the absolute pressure applied to the free liquid surface in the suction tank, expressed in feet of liquid; hp is the quotient between the barometric pressure and the specific weight of the liquid.
- h_z is the suction lift between the pump axis and the free liquid surface in the suction tank, expressed in feet; hz is negative when the liquid level is lower than the pump axis.

- h_f is the flow resistance in the suction line and its accessories, such as: fittings, foot valve, gate valve, elbows, etc.
- h_{pv} is the vapor pressure of the liquid at the operating temperature, expressed in feet of the liquid. hpv is the quotient between the Pv vapor pressure and the liquid's specific weight.

0.5 is the safety factor.

The maximum possible suction head for installation depends on the value of the atmospheric pressure (i.e. the elevation above sea level at which the pump is installed) and the temperature of the liquid.

To help the user, with reference to water temperature (40°F) and to the elevation above sea level, the following tables show the drop in hydraulic pressure head in relation to the elevation above sea level, and the suction loss in relation to temperature.

Water Temperature (°C)	68	104	140	176	194	230	248
Suction Loss (ft)	7	2.3	6.6	16.4	24.3	50.5	70.5

Elevation Above Sea Level (ft)	1600	3300	4900	6500	8200	9800
Suction Loss (ft)	1.8	3.6	5.4	7.2	9.0	10.8

To reduce it to a minimum, especially in cases of high suction head (over 13 - 16 feet) or within the operating limits with high flow rates, we recommend using a suction line having a larger diameter than that of the pump's suction port. It is always a good idea to position the pump as close as possible to the liquid to be pumped.

TECHNICAL DATA - WATER PROPERTY CHART

Temp °F	Temp °C	Specific Volume		Specific Gravity	1	Weight	Vapor Pressure
тетр г	iemp C	(Cubic ft/lb)	@ 39.2°F	@ 60°F	@ 68°F	(lb/cubic ft)	(psi Abs)
32	0.0	0.01602	1.000	1.001	1.002	62.42	0.088
35	1.7	0.01602	1.000	1.001	1.002	62.42	0.100
40	4.4	0.01602	1.000	1.001	1.002	62.42	0.122
50	10.0	0.01603	0.999	1.001	1.002	62.38	0.178
60	15.6	0.01604	0.999	1.000	1.001	62.34	0.256
70	21.1	0.01606	0.998	0.999	1.000	62.27	0.363
80	26.7	0.01608	0.996	0.998	0.999	62.19	0.507
90	32.2	0.0161	0.995	0.996	0.997	62.11	0.698
100	37.8	0.01613	0.993	0.994	0.995	62.00	0.949
120	48.9	0.0162	0.989	0.990	0.991	61.73	1.692
140	60.0	0.01629	0.983	0.985	0.986	61.39	2.889
160	71.1	0.01639	0.977	0.979	0.979	61.01	4.741
180	82.2	0.01651	0.970	0.972	0.973	60.57	7.510
200	93.3	0.01663	0.963	0.964	0.966	60.13	11.526
212	100.0	0.01672	0.958	0.959	0.960	59.81	14.696
220	104.4	0.01677	0.955	0.956	0.957	59.63	17.186
240	115.6	0.01692	0.947	0.948	0.949	59.10	24.97
260	126.7	0.01709	0.938	0.939	0.940	58.51	35.43
280	137.8	0.01726	0.928	0.929	0.930	58.00	49.20
300	148.9	0.01745	0.918	0.919	0.920	57.31	67.01
320	160.0	0.01756	0.908	0.909	0.910	56.66	89.66
340	171.1	0.01787	0.896	0.898	0.899	55.96	118.01
360	182.2	0.01811	0.885	0.886	0.887	55.22	153.04
380	193.3	0.01836	0.873	0.874	0.875	54.47	195.77
400	204.4	0.01864	0.859	0.860	0.862	53.65	247.31
420	215.6	0.01894	0.846	0.847	0.848	52.80	308.83
440	226.7	0.01926	0.832	0.833	0.834	51.92	381.59
460	237.8	0.0196	0.817	0.818	0.819	51.02	466.9
480	248.9	0.02	0.801	0.802	0.803	50.00	566.1
500	260.0	0.0204	0.785	0.786	0.787	49.02	680.8
520	271.1	0.0209	0.765	0.766	0.767	47.85	812.4
540	282.2	0.0215	0.746	0.747	0.748	46.51	962.5
560	293.3	0.0221	0.726	0.727	0.728	45.30	1133.1
580	304.4	0.0228	0.703	0.704	0.704	43.90	1325.8
600	315.6	0.0236	0.678	0.679	0.680	42.30	1542.9
620	326.7	0.0247	0.649	0.650	0.650	40.50	1786.6
640	337.8	0.026	0.617	0.618	0.618	38.50	2059.7
660	348.9	0.0278	0.577	0.577	0.578	36.00	2365.4
680	360.0	0.0305	0.525	0.526	0.527	32.80	2708.1
700	371.1	0.0369	0.434	0.435	0.435	27.10	3093.7

VOLUMETRIC CAPACITY

Litres per minute I/min	Cubic metres per hour m³/h	Cubic feet per hour ft³/h	Cubic feet per minute ft³/min	Imp. gal. per minute Imp. gal/min	US gal. per minute Us gal./min
1,0000	0,0600	2,1189	0,0353	0,2200	0,2640
16,6670	1,0000	35,3147	0,5886	3,6660	4,4030
0,4720	0,0283	1,0000	0,0167	0,1040	0,1250
28,3170	1,6990	60,0000	1,0000	6,2290	7,4800
4,5460	0,2728	9,6326	0,1605	1,0000	1,2010
3,7850	0,2271	8,0209	0,1337	0,8330	1,0000
0,1100	0,0066	0,2339	0,0039	0,0240	0,0290

PRESSURE AND HEAD

Newtons per square metre N/m²	kilopascal kPa	bar bar	Pound force per square inch psi	metre of water m H₂O	millimetre of mercury mm Hg
1,0000	0,0010	1 x 105	1,45 x 10 ⁻⁴	1,02 x 10 ⁻⁴	0,0075
1000,0000	1,0000	0,0100	0,1450	0,1020	7,5000
100000,0000	100,0000	1,0000	14,5000	10,2000	750,1000
98067,0000	98,0700	0,9810	14,2200	10,0000	735,6000
6895,0000	6,8950	0,0690	1,0000	0,7030	51,7200
2984,0000	2,9840	0,0300	0,4330	0,3050	22,4200
9789,0000	9,7890	0,0980	1,4200	1,0000	73,4200
133,3000	0,1330	0,0013	0,0190	0,0140	1,0000
3386,0000	3,3860	0,0338	0,4910	0,3450	25,4000

LENGTH

millimetre mm	centimetre cm	metre m	inch in	foot ft	yard yd
10,0000	1,0000	0,0100	0,3937	0,0328	0,0109
1000,0000	100,0000	1,0000	39,3701	3,2808	1,0936
25,4000	2,5400	0,0254	1,0000	0,0833	0,0278
304,8000	30,4800	0,3048	12,0000	1,0000	0,3333
914,4000	91,4400	0,9144	36,0000	3,0000	1,0000

VOLUME

cubic metre m³	litre litre	millilitre ml	imp. gallon imp. gal.	US gallon US gal.	cubic foot ft³
1,0000	1000,0000	1 x 106	220,0000	264,2000	35,3147
0,0010	1,0000	1000,0000	0,2200	0,2642	0,0353
1 x 10-6	0,0010	1,0000	2,2 x 10-4	2,642 x 10-4	3,53 x 10-5
0,0045	4,5460	4546,0000	1,0000	1,2010	0,1605
0,0038	3,7850	3785,0000	0,8327	1,0000	0,1337
0,0283	28,3170	28317,0000	6,2288	7,4805	1,0000

Xylem |'zīləm|

- 1) The tissue in plants that brings water upward from the roots;
- 2) a leading global water technology company.

We're 12,700 people unified in a common purpose: creating innovative solutions to meet our world's water needs. Developing new technologies that will improve the way water is used, conserved, and re-used in the future is central to our work. We move, treat, analyze, and return water to the environment, and we help people use water efficiently, in their homes, buildings, factories and farms. In more than 150 countries, we have strong, long-standing relationships with customers who know us for our powerful combination of leading product brands and applications expertise, backed by a legacy of innovation.

For more information on how Xylem can help you, go to www.xyleminc.com

Xylem Inc. 2881 East Bayard Street Ext., Suite A Seneca Falls, NY 13148 Phone: (800) 453-6777 Fax: (888) 322-5877

www.gouldswatertechnology.com

Goulds is a registered trademark of Goulds Pumps, Inc. and is used under license. © 2013 Xylem Inc. $\,$ BPHV R3 $\,$ July 2013